Selection of suitable reference genes for quantitative RT-PCR normalization in the halophyte Halostachys caspica under salt and drought stress
نویسندگان
چکیده
The plants are always subjected to various environmental stress, because of plant sessile growth. qRT-PCR is a sensitive and reliable technology, and the normalization of target gene expression with suitable reference genes is very important for obtaining accurate data. Halostachys caspica is an extremely salt-tolerant halophyte belonging to Chenopodiaceae and a good candidate to explore the stress-physiological and molecular mechanism. To get truly the expression profiles of coding genes and miRNAs in H. caspica in response to salt and drought stress using qRT-PCR, suitable reference genes need to be confirmed. In this study, 10 candidate genes including ACT, UBC10, UBC13, TUB2, TUB3, EF1α, 5S rRNA, tRNA, U6 and miR1436 from H. caspica are chosen, and among them, the former nine are commonly used as internal control genes, and miR1436 with high sequence copies is no significant difference expression in high salinity-treated and untreated small RNA libraries of this species. The three softwares are used to analyze expression stability. The results showed that EF1α and TUB3 were the most stable under salt and drought stress, respectively, and UBC10 was the most constant aross all the samples with the both stressed combination. This work will benefit deep studies on abiotic tolerance in H. caspica.
منابع مشابه
Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR
Real-time quantitative polymerase chain reaction (RT-qPCR), a reliable technique for quantifying gene expression, requires stable reference genes to normalize its data. Salicornia europaea, a stem succulent halophyte with remarkable salt resistance and high capacity for ion accumulation, has not been investigated with regards to the selection of appropriate reference genes for RT-qPCR. In this ...
متن کاملValidation of reference genes for quantitative RT-PCR normalization in Suaeda aralocaspica, an annual halophyte with heteromorphism and C4 pathway without Kranz anatomy.
Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful analytical technique for the measurement of gene expression, which depends on the stability of the reference gene used for data normalization. Suaeda aralocaspica, an annual halophyte with heteromorphic seeds and possessing C4 photosynthesis pathway without Kranz anatomy, is an ideal plant species to ...
متن کاملSelection of suitable reference genes for real-time PCR studies of early developmental stages of sturgeons
In quantitative real-time PCR, the mRNA level can be quantified in relative terms based on the expression ratio of mRNAs of the target gene and an internal reference gene. Since, an internal standard should be expressed at a constant level among different tissues of an organism at all stages of development, and should be unaffected by the experimental treatment, the stability of different refer...
متن کاملStable Internal Reference Genes for the Normalization of Real-Time PCR in Different Sweetpotato Cultivars Subjected to Abiotic Stress Conditions
Reverse transcription quantitative real-time PCR (RT-qPCR) has become one of the most widely used methods for gene expression analysis, but its successful application depends on the stability of suitable reference genes used for data normalization. In plant studies, the choice and optimal number of reference genes must be experimentally determined for the specific conditions, plant species, and...
متن کاملExpression pattern analysis of TomPRO2 and LaPA1 genes in tomato under in vitro salt stress by Semi-quantitative RT-PCR
The expression pattern of TomPRO2 and LaPA1 genes in two tomato (Lycopersicon esculentum) cultivars named as Isfahani and Shirazi under in vitro salt stress were investigated. Four to six weeks old in vitro grown seedlings were transferred on MS medium containing 0, 80 and 160 mM NaCl and untreated plants were used as control. RNA was extracted from root and leaf and then cDNA was synthesized. ...
متن کامل